數學排列組合10相同的個球分給兒童,一人,其餘兩人

2021-05-29 09:49:56 字數 4373 閱讀 9809

1樓:塗智華

分成三組是不考慮順序

c(4,10)c(3,6)c(3,3)可理解為先取出4個放在第一位,再取出3個放在第二位,剩下的3個放在第三位,把前面分出的第二和第三位對換一下又是一種可能,但不考慮順序的話這兩種情況是相同的,故重複了一次,應除以2

推廣:有幾組個數是相同的就是幾的階乘,這是一個小的排列問題

求大神高中數學(1)把六個相同的小球全部分到三個相同的盒子中,每盒至少一個共有-種分法

2樓:城東

一、相鄰問題**法

例1 6名同學排成一排,其中甲、乙兩人必須排在一起的不同排法有( )種

a. 720 b. 360 c. 240 d. 120

解:因甲、乙兩人要排在一起,故將甲、乙兩人捆在一起視作一人,與其餘四人進行全排列有種排法;甲、乙兩人之間有種排法。由分步計數原理可知,共有=240種不同排法,選c。

評註:從上述解法可以看出,所謂「**法」,就是在解決對於某幾個元素相鄰的問題時,可整體考慮將相鄰元素視作一個「大」元素。

二、相離問題插空法

例2 要排一張有6個歌唱節目和4個舞蹈節目的演出節目單,任何兩個舞蹈節目不得相鄰,有多少不同的排法?(只要求寫出式子,不必計算)

解:先將6個歌唱節目排好,其不同的排法為種;這6個歌唱節目的空隙及兩端共7個位置中再排4個舞蹈節目,有種排法。由分步計數原理可知,任何兩個舞蹈節目不得相鄰的排法為種。

評註:從解題過程可以看出,不相鄰問題是要求某些元素不能相鄰,由其它元素將它們隔開。此類問題可以先將其它元素排好,再將所指定的不相鄰的元素插入到它們的間隙及兩端位置,故稱插空法。

三、定序問題縮倍法

例3 訊號兵把紅旗與白旗從上到下掛在旗杆上表示訊號。現有3面紅旗、2面白旗,把這5面旗都掛上去,可表示不同訊號的種數是__________(用數字作答)。

解:5面旗全排列有種掛法,由於3面紅旗與2面白旗的分別全排列均只能算作一次的掛法,故共有不同的訊號種數是=10(種)。

評法:在排列問題中限制某幾個元素必須保持一定順序稱為定序問題。這類問題用縮小倍數的方法求解比較方便快捷。

四、標號排位問題分步法

例4 同室4人各寫一張賀年卡,先集中起來,然後每人從中拿一張別人送來的賀年卡,則四張賀年卡的分配方式有( )

a. 6種 b. 9種 c. 11種 d. 23種

解:此題可以看成是將數字1,2,3,4填入標號為1,2,3,4的四個方格里,每格填一個數,且每個方格的標號與所填數不同的填法問題。所以先將1填入2至4號的3個方格里有種填法;第二步把被填入方格的對應數字,填入其它3個方格,又有種填法;第三步將餘下的兩個數字填入餘下的兩格中,只有1種填法。

故共有3×3×1=9種填法,而選b。

評註:把元素排在指定號碼的位置上稱為標號排位問題。求解這類問題可先把某個元素按規定排放,第二步再排另一個元素,如此繼續下去,依次即可完成。

五、有序分配問題逐分法

例5 有甲、乙、丙三項任務,甲需由2人承擔,乙、丙各需由1人承擔,從10人中選派4人承擔這三項任務,不同的選法共有( )種

a. 1260 b. 2025 c. 2520 d. 5040

解:先從10人中選出2人承擔甲項任務,再從剩下8人中選1人承擔乙項任務,最後從剩下7人中選1人承擔丙項任務。根據分步計數原理可知,不同的選法共有=2520種,故選c。

評註:有序分配問題是指把元素按要求分成若干組,常採用逐步下量分組法求解。

六、多元問題分類法

例6 由數字0,1,2,3,4,5組成沒有重複數字的六位數,其中個位數字小於十位數字的共有( )

a. 210個 b. 300個 c.

464個 d. 600個

解:按題意個位數只可能是0,1,2,3,4共5種情況,符合題意的分別有,個。合併總計,共有+=300(個),故選b。

評註:元素多,取出的情況也多種,可按結果要求,分成互不相容的幾類情況分別計算,最後總計。

另解:先排首位,不用0,有種方法;再同時排個位和十位,由於個位數字小於十位數字,即順序固定,故有種方法;最後排剩餘三個位置,有種排法。故共有符合要求的六位數=300(個)。

七、交叉問題集合法

例7 從6名運動員中選出4名參加4×100米接力賽,如果甲不跑第一棒,乙不跑第四棒,共有多少種不同的參賽方法?

解:設全集u=,a=,b=,根據求集合元素個數的公式可得參賽方法共有

=252(種)。

評註:某些排列組合問題幾部分之間有交集,可用集合中求元素個數的公式:來求解。

八、定位問題優限法

例8 計劃展出10幅不同的畫,其中1幅水彩畫、4幅油畫、5幅國畫,排成一行陳列,要求同一品種的畫必須連在一起,並且水彩畫不放在兩端,那麼不同的陳列方式有( )

a. b. c. d.

解:先把3種品種的畫看成整體,而水彩畫不能放在頭尾,故只能放在中間,則油畫與國畫有種放法。再考慮油畫之間與國畫之間又可以各自全排列。故總的排列的方法為種,故選d。

評註:所謂「優限法」,即有限制條件的元素(或位置)在解題時優先考慮。

九、多排問題單排法

例9 兩排座位,第一排有3個座位,第二排有5個座位,若8名學生入座(每人一座位),則不同的坐法種數為( )

a. b. c. d.

解:此題分兩排坐,實質上就是8個人坐在8個座位上,故有種坐法,所以選d。

評註:把元素排成幾排的問題,可歸結為一排考慮。

十、至少問題間接法

例10 從4臺甲型和5臺乙型電視機中任意取出3臺,其中至少要甲型與乙型電視機各一臺,則不同的取法共有( )種

a. 140 b. 80 c. 70 d. 35

解析:在被取出的3臺中,若不含甲型或不含乙型的抽取方法均不合題意,故符合題意的取法有=70種,選c。

評註:含「至多」或「至少」的排列組合問題,通常用分類法。本題所用的解法是間接法,即排除法(總體去雜),適用於反面情況明確且易於計算的情況。

十一、選排問題先取後排法

例11 四個不同的小球放入編號為1,2,3,4的四個盒子中,則恰有一個空盒的放法共有_________種(用數字作答)。

解:先從四個小球中取兩個放在一起,種不同的取法;再把取出的兩個小球與另外兩個小球看作三堆,並分別放入四個盒子中的三個盒子中,有種不同的放法。依據分步計數原理,共有種不同的方法。

評註:這是一道排列組合的混合應用題目,這類問題的一般解法是先取(組合)後排(排列)。本題正確求解的關鍵是把四個小球中的兩個視為一個整體,如果考慮不周,就會出現重複和遺漏的錯誤。

十二、部分符合條件淘汰法

例12 四面體的頂點及各稜中點共有10個點,在其中取4個不共面的點,不同的取法共有( )

a. 150種 b. 147種 c. 144種 d. 141種

解:10個點中取4個點共有種取法,其中同一側面內的6個點中任取4個點必共面,這樣的面共有4個;又同一條稜上的3個點與對稜的中點也四點共面,共有6個面;再各稜中點共6個點中,取四點共面的平面有3個。故符合條件4個點不共面的取法共有=141(種),故選d。

評註:在選取總數中,只有一部分符合條件,可從總數中減去不符合條件的個數,即為所求。

應該指出的是,上述所介紹的適用不同要求的各種方法並不是絕對的,對於同一問題有時會有多種方法,這時要認真思考和分析,靈活選取最佳方法。

數學排列組合部分 問題內容: 把10本相同的書分配給3個人 每人至少有一本 問有幾種分配方法 a---a----a---

3樓:良駒絕影

分成三堆,可能會分成(123)(456)(7890),也可能出現(7890)(123)(456),若你再乘以a(3,3),你自己看看,不就重複了嗎?

4樓:匿名使用者

只是說分發,比如a=1 b=1 c =8和 a=8 b=1 c=1,情況是一樣的,沒有特定a,b,c是誰,所以算的是分發,abc cab是一樣的,就不需要*3了

5樓:匿名使用者

因為你在分書的時候已經對書有過排序,所以分三人的時候不用乘了

數學的排列組合問題一道高中數學排列組合問題

其實這兩個題區別的在於,第二 題有標誌物 種子選手。相當於第二題中兩個組已經有了一個種子選手作為組長,剩下的1 8個人分到兩個組是有區別的,譬如c84選出來的是1 4,跟了第一個種子選手和跟了第二個種子選手是兩種不同的分組方法。所以c84之後要乘以2.但是第一題不同,兩人選取贈品都是隨意的。沒有標誌...

有關排列組合的數學問題

因為每封信投到每個信箱的概率是一樣的,所以,每封信有3種可能。一共有4封信,所以共有3 3 3 3種可能。即答案為 3 4 81種可能。暈。你題目沒說其他條件,只說把四封信投入三個信箱,當然就81種。如果一定要有一個信封有兩封信,則解法當然不同啦。按你說的。其中乙個信封一定要有兩封信,則先抽兩封信出...

數學排列組合問題,求解答,最後一問的答案是怎麼來的

0不在最後一位的偶數,則最後一位是2,4,6,8四個裡選一個 首位是從去掉0,和最後一位上的數字後,剩下的8個數字裡選一個 中間兩位是去掉首位和最後一個上的數字後,剩下的8個數字裡選2個,並排列 0 9裡的偶數0.2.4.6.8,共五個,除了0之外還剩4個c14表示剩下的4個偶數取一個排在末位 c1...