計算二重積分x2y2dxdy,其中D是圓形

2021-03-19 18:20:42 字數 4097 閱讀 2595

1樓:午後藍山

^^a^2≤x^+y^2≤b^2

令x=pcosa,y=psina

a≤p≤b,0≤a≤2π

∫∫√(x^2+y^2)dxdy

=∫[0,2π]da∫[a,b]p*pdp=a[0,2π]*1/2p^2[a,b]

=π(b^2-a^2)

二重積分∫∫(√x^2+y^2)dxdy,其中d是圓環形區域a^2≤x^2+y^2≤b^2

2樓:

^利用極座標變換:

x=rcosa

y=rsina

其中,a≤r≤b,0≤a≤2π

∫∫ √(x^2+y^2) dxdy

=∫∫ r^2 drda

=∫(a,b) r^2 dr * ∫(0,2π) da=2πr^3/3 | (a,b)

=(2π/3)(b^3-a^3)

有不懂歡迎追問

∫∫d √(a^2-x^2-y^2) dxdy,其中d為x^2+y^2≤ax.(利用極座標變換計算

3樓:匿名使用者

答:(3π-4)a³/9

d為x²+y²≤ax,配方得

(x-a/2)²+y²≤(a/2)²

極座標化簡得0≤r≤a*cosθ

整個積分割槽域d都黏在y軸右邊,故-π/2≤θ≤π/2

∫∫_(d) √(a²-x²-y²) dxdy

= ∫(-π/2,π/2) dθ ∫(0,a*cosθ) √(a²-r²)*r dr

利用對稱性,原積分等於在第一象限部分的兩倍

= 2∫(0,π/2) dθ ∫(0,a*cosθ) √(a²-r²)*r dr

而∫ √(a²-r²)*r dr = ∫ √(a²-r²)*(-1/2) d(a²-r²)

= (-1/2)(2/3)(a²-r²)^(3/2) = (-1/3)(a²-r²)^(3/2)

代入積分限得(-1/3)(a³|sinθ|³-a³) = (a³/3)(1-|sinθ|³)

用了對稱性的好處就是可以簡單去掉絕對號,在0≤θ≤π/2中|sinθ|=sinθ

於是= 2∫(0,π/2) (a³/3)(1-sin³θ) dθ

= (2a³/3)*(π/2-2/3)

= (3π-4)a³/9

計算二重積分i=∫∫(x^2+y^2+3y)dxdy,其中d=((x,y)|x^2+y^20)

4樓:匿名使用者

假設a>0,

利用極座標公式

令x=rcost

y=rsint

則d=dxdy=rdrdt

於是原式=∫∫d (r²+3rsint)rdrdt=∫【-π/2,π/2】dt ∫【0,a】(r³+3r²sint)dr

=∫【-π/2,π/2】(0.25a^4+a³ sint) dt=0.25πa^4

不明白可以追問,如果有幫助,請選為滿意回答!

5樓:匿名使用者

解:用代換法

令x=rcosα,y=rsinα,其中r∈[0,a),α∈[0,2π),且|j|=r。

原積分i=∫[0,2π]∫[0,a](r^2+3rsinα)rdrdα

=∫[0,2π](a^4/4-a^3*sinα)dα=πa^4/2

計算二重積分:∫∫d ln(x^2+y^2)dxdy,其中d為1/2≤x^2+y^2≤1

6樓:樂寒夢籍闌

解:原式=∫<0,2π>dθ∫<1,1/√2>ln(r^2)rdr(作極座標變換)

=4π∫<1,1/√2>r*lnrdr

=4π[(ln2-1)/8]

(應用分部積分法計算)

=π(ln2-1)/2。

7樓:戲材操涵

用極座標算

x=ρ來cosα自

y=ρsinα

積分割槽域d是上半圓,ρ∈[0,1],α∈[0,π]∫∫√(x^2+y^2)dxdy

=∫dα∫ρ^2dρ(dα前的上限是π,下限是0;dρ的上限是1,下限是0)

=∫1/3dα=π/3

計算二重積分∫∫(x^2+y^2+x)dxdy,其中d為區域x^2+y^2<=1

8樓:回金蘭表妍

首先計算∫∫xdxdy,由於被積函式是關於x的奇函式,而積分割槽域關於y軸對稱,所以∫∫xdxdy=0,原積分=∫∫(x^2+y^2)dxdy,用極座標計算,=∫dθ∫r^3dr,(r積分限0到1,θ積分限0到2π)=2π/4=π/2

9樓:求墨徹曲環

這是二重積分,要確定積分上下限。

積分割槽域的圖形知道吧?是閉環域。

換成極座標後,角度θ從0積到2∏,r從1積到2。

表示式為∫dθ∫lnr^2

rdr,注意要寫積分上下限。

然後算2個定積分就行了。

10樓:drar_迪麗熱巴

由於被積函式是關於x的奇函式,而積分割槽域關於y軸對稱,所以∫∫xdxdy=0,

原積分=∫∫(x^2+y^2)dxdy,用極座標計算=∫dθ∫r^3dr,(r積分限0到1,θ積分限0到2π)=2π/4=π/2

在空間直角座標系中,二重積分是各部分割槽域上柱體體積的代數和,在xoy平面上方的取正,在xoy平面下方的取負。某些特殊的被積函式f(x,y)的所表示的曲面和d底面所為圍的曲頂柱體的體積公式已知,可以用二重積分的幾何意義的來計算。

數值意義

二重積分和定積分一樣不是函式,而是一個數值。因此若一個連續函式f(x,y)內含有二重積分,對它進行二次積分,這個二重積分的具體數值便可以求解出來。

計算二重積分∫∫√(x^2+y)dxdy,其中d:x^2+y^2≤2x

11樓:匿名使用者

計算二重積分時,應先計算其中一個自變數的取值範圍,接著計算另一個自變數的取值範圍,從而計算出二重積分。

12樓:戎忍秦絲雨

設x=rcost

y=rsint

-π/2<=t<=π/2

所以r^2<=2rcost

r<=2cost

∫∫√(x^2+y^2)dxdy

=∫[-π/2,π/2]

dt∫[0,2cost]

r^2dr

=∫[-π/2,π/2]

dt1/3r^3

[0,2cost]

=8/3

∫[-π/2,π/2]

cos^3t

dt=8/3∫[-π/2,π/2]

(1-sin^2t)

d(sint)

=8/3*(sint-1/3sin^3t)[-π/2,π/2]

=32/9

計算二重積分∫∫√(x^2+y^2)dxdy,其中d:x^2+y^2≤2x。 d

13樓:匿名使用者

化成極座標,x^2+y^2≤2x,變成r=2cosθ積分割槽域;0≤r≤2cosθ,

π/2≤θ≤π/2,

區域以x軸為上下對稱,只求第一象限區域,再2倍即可,i=2∫[0,π/2] dθ∫[0,2cosθ] r*rdr=2∫[0,π/2] dθ (r^3/3)[0,2cosθ]=(2/3)∫[0,π/2] *8(cosθ)^3 dθ=(16/3)∫[0,π/2] [1-(sinθ)^2]d(sinθ)

=(16/3)[sinθ-(sinθ)^3/3] [0,π/2]=(16/3)[1/2-1/8)

=32/9.

14樓:匿名使用者

^設x=rcost y=rsint -π/2<=t<=π/2所以r^2<=2rcost r<=2cost∫∫√(x^2+y^2)dxdy

=∫[-π/2,π/2] dt ∫[0,2cost] r^2dr=∫[-π/2,π/2] dt 1/3r^3 [0,2cost]=8/3 ∫[-π/2,π/2] cos^3t dt=8/3∫[-π/2,π/2] (1-sin^2t) d(sint)=8/3*(sint-1/3sin^3t) [-π/2,π/2]=32/9

計算二重積分x 2 y 2 dxdy,其中積分割槽域Dx,y 1x 2 y

用極座標 x 2 y 2 dxdy 0,2 d 1,2 r 2dr 2 8 1 3 14 3 設極座標x cos y sin 1 2原式 0到2 d 1到2 ln 2d 2 1 2 2 ln 2 1 2 2 1到2 2 4ln2 3 2 8ln2 3 計算二重積分 ln x 2 y 2 dxdy,其...

計算二重積分y根號(x 2 y 2 dxdy,其中D x 2 y 21,y

用極座標算 x cos y sin 積分割槽域d是上半圓,0,1 0,x 2 y 2 dxdy d 專 2d d 前的上限是 下屬限是0 d 的上限是1,下限是0 1 3d 3 計算二重積分 x 2 y 2 dxdy,其中d x 2 y 2 2x。d 化成極座標,x 2 y 2 2x,變成r 2co...

計算二重積分 D1 xy1 x2 y2dxdy,其中D為x

由於積分割槽域d 故?d 1 xy 1 x y dxdy 2 2d 1 01 r sin cos 1 rrdr 2?2d 10 11 r rdr 2 2d 10r sin cos 1 rrdr 1 2ln 1 r 1 0 1 4cos2 2 2 1 0rdr1 r 2ln2 計算二重積分?d x y...