一階線性微分方程求特解附圖,知道非其次微分方程的兩個特解怎麼求通解

2021-05-28 02:57:24 字數 3271 閱讀 5043

1樓:匿名使用者

^^let

u= (x^3+1)y

du/dx = (x^3+1) dy/dx + 3x^2. y//y' +3x^2.y/(x^3+1) = y^2.(x^3+1). sinx

(x^3+1)y' +3x^2.y = y^2.(x^3+1)^2. sinx

du/dx = u^2 .sinx

∫ du/u^2 = ∫ sinx dx

1/u = cosx +c

1/[(x^3+1)y] = cosx +cy(0) =1

1= 1 +c

=> c=0

1/[(x^3+1)y] = cosx

y= 1/[cosx .(x^3+1)]

知道非其次微分方程的兩個特解怎麼求通解

2樓:angela韓雪倩

通解是特解的線性組合,y=c1·y1+c2·y2,如果y1和y2線性無關的話。

一階線性微分方程可分兩類,一類是齊次形式的,它可以表示為y'+p(x)y=0,另一類就是非齊次形式的,它可以表示為y'+p(x)y=q(x)。

齊次線性方程與非齊次方程比較一下對理解齊次與非齊次微分方程是有利的。對於非齊次微分方程的解來講,類似於線性方程解的結構結論還是成立的。就是:

非齊次微分方程的通解可以表示為齊次微分方程的通解加上一個非齊次方程的特解。

3樓:pasirris白沙

1、樓上網友的解答是錯誤的:

a、樓主問的是非齊次方

程的通解,而不是齊次方程的通解;

b、非齊次方程的通解,可以根據齊次方程的特解來確定,這種方法被稱為「引數變易法」「常數變易法」;

英文是:

variation of variables, variation of constant。

下面給樓主提供示例 exemplification,同一道微分方程題,提供不同的解答方法,其中包括引數變易法。

如有疑問,歡迎提問,有問必答。

每張**均可點選放大,**更加清晰:

4樓:好主意公民

方程的通解,而不是齊次方程的通解;b、非齊次方程的通解,可以根據齊次方程的特解來確... variation of constant。 下面給樓主提供示例 exemplification,同一道微分方程題,提供不同

微分方程的特解怎麼求

5樓:安貞星

二次非齊次微分方程的一般解法

一般式是這樣的ay''+by'+cy=f(x)

第一步:求特徵根

令ar²+br+c=0,解得r1和r2兩個值,(這裡可以是複數,例如(βi)²=-β²)

第二步:通解

1、若r1≠r2,則y=c1*e^(r1*x)+c2*e^(r2*x)

2、若r1=r2,則y=(c1+c2x)*e^(r1*x)

3、若r1,2=α±βi,則y=e^(αx)*(c1cosβx+c2sinβx)

第三步:特解

f(x)的形式是e^(λx)*p(x)型,(注:p(x)是關於x的多項式,且λ經常為0)

則y*=x^k*q(x)*e^(λx) (注:q(x)是和p(x)同樣形式的多項式,例如p(x)是x²+2x,則設q(x)為ax²+bx+c,abc都是待定係數)

1、若λ不是特徵根 k=0 y*=q(x)*e^(λx)

2、若λ是單根 k=1 y*=x*q(x)*e^(λx)

3、若λ是二重根 k=2 y*=x²*q(x)*e^(λx)(注:二重根就是上面解出r1=r2=λ)

f(x)的形式是e^(λx)*p(x)cosβx或e^(λx)*p(x)sinβx

1、若α+βi不是特徵根,y*=e^λx*q(x)(acosβx+bsinβx)

2、若α+βi是特徵根,y*=e^λx*x*q(x)(acosβx+bsinβx)(注:ab都是待定係數)

第四步:解特解係數

把特解的y*'',y*',y*都解出來帶回原方程,對照係數解出待定係數。

最後結果就是y=通解+特解。

通解的係數c1,c2是任意常數。

拓展資料:

微分方程

微分方程指描述未知函式的導數與自變數之間的關係的方程。微分方程的解是一個符合方程的函式。而在初等數學的代數方程,其解是常數值。

高數常用微分表

唯一性存在定一微 分程及約束條件,判斷其解是否存在。唯一性是指在上述條件下,是否只存在一個解。針對常微分方程的初值問題,皮亞諾存在性定理可判別解的存在性,柯西-利普希茨定理則可以判別解的存在性及唯一性。

針對偏微分方程,柯西-克瓦列夫斯基定理可以判別解的存在性及唯一性。 皮亞諾存在性定理可以判斷常微分方程初值問題的解是否存在。

6樓:匿名使用者

微分方程的特解步驟如下:

一個二階常係數非齊次線性微分方程,首先判斷出是什麼型別的。

然後寫出與所給方程對應的齊次方程。

接著寫出它的特徵方程。由於這裡λ=0不是特徵方程的根,所以可以設出特解。

把特解代入所給方程,比較兩端x同次冪的係數。

舉例如下:

7樓:耐懊鶴

∵齊次方程y''-5y'+6y=0的特徵方程是r²-5r+6=0,則r1=2,r2=3

∴齊次方程y''-5y'+6y=0的通解是y=c1e^(2x)+c2e^(3x) (c1,c2是積分常數)

∵設原方程的解為y=(ax²+bx)e^(2x)

代入原方程,化簡整理得-2axe^(2x)+(2a-b)e^(2x)=xe^(2x)

==>-2a=1,2a-b=0

==>a=-1/2,b=-1

∴原方程的一個解是y=-(x²/2+x)e^(2x)

於是,原方程的通解是y=c1e^(2x)+c2e^(3x)-(x²/2+x)e^(2x) (c1,c2是積分常數)

∵y(0)=5,y'(0)=1 ==>c1+c2=5,2c1+3c2-1=11

∴c1=3,c2=2

故原方程在初始條件y(0)=5,y'(0)=1下的特解是y=3e^(2x)+2e^(3x)-(x²/2+x)e^(2x)

即y=(3-x-x²/2)e^(2x)+2e^(3x).

8樓:匿名使用者

微分方程的特解怎麼求?你是80我也不會。有時間我告訴你。

9樓:匿名使用者

這個提示非常難的,我覺得具有這方面的學生或者是老師幫來解答,知道你是學生還是什麼?如果你是學生的話,你可以問以前老師,不要不好意思的

一階線性微分方程通解,求該一階線性微分方程的通解

dy dx p x y q x 的通解。解 此方程在現在這個狀態,無法分離變數 分離不了變數,就無法求解。最常用的方法,是先求一階齊次方程dy dx p x y 0的通解,然後把積分常數換成x的函式u x 再將帶u的通解y和y 代入原式,即可求出函式u x 最後即可求得原方程的通解。這個過程已經程式...

求教一階線性微分方程

y 2y x 1 x 1 3 0y 2y x 1 x 1 3 先求對應的齊次方程y 2y x 1 0的解,變數分離法。dy y 2dx x 1 ln y 2ln x 1 c1 y c x 1 2 其中c 正負e c1 然後將常數c設為關於x的函式c x y c x x 1 2即為原非齊次方程的解,帶...

求解一階線性偏微分方程,求解一階擬線性偏微分方程組!非常感謝!急急急!!!

這個方程應該可以用特徵線法去求解,但是還要給出u,v的邊界條件才能給出具體的表示式。建議你看本數學物理方程的書都有講特徵線法的。英文書你可以看evans的pde 求解一階擬線性偏微分方程組!非常感謝!急急急!這個方程應該可以用特徵線法去求解,但是還要給出u,v的邊界條件才能給出具體的表示式。建議你看...