高等數學微積分,微分和積分割槽別是什麼?詳細的。哥有很多分

2021-03-19 18:35:47 字數 5353 閱讀 1693

1樓:匿名使用者

分多不要浪費!

積分一般分為不定積分、定積分和微積分三種

1.0不定積分

設f(x)是函式f(x)的一個原函式,我們把函式f(x)的所有原函式f(x)+c(c為任意常數)叫做函式f(x)的不定積分。

記作∫f(x)dx。

其中∫叫做積分號,f(x)叫做被積函式,x叫做積分變數,f(x)dx叫做被積式,c叫做積分常數,求已知函式的不定積分的過程叫做對這個函式進行積分。

由定義可知:

求函式f(x)的不定積分,就是要求出f(x)的所有的原函式,由原函式的性質可知,只要求出函式f(x)的一個原函式,再加上任意的常數c,就得到函式f(x)的不定積分。

也可以表述成,積分是微分的逆運算,即知道了導函式,求原函式.

2.0定積分

眾所周知,微積分的兩大部分是微分與積分。微分實際上是求一函式的導數,而積分是已知一函式的導數,求這一函式。所以,微分與積分互為逆運算。

實際上,積分還可以分為兩部分。第一種,是單純的積分,也就是已知導數求原函式,而若f(x)的導數是f(x),那麼f(x)+c(c是常數)的導數也是f(x),也就是說,把f(x)積分,不一定能得到f(x),因為f(x)+c的導數也是f(x),c是無窮無盡的常數,所以f(x)積分的結果有無數個,是不確定的,我們一律用f(x)+c代替,這就稱為不定積分。

而相對於不定積分,就是定積分。

所謂定積分,其形式為∫f(x) dx (上限a寫在∫上面,下限b寫在∫下面)。之所以稱其為定積分,是因為它積分後得出的值是確定的,是一個數,而不是一個函式。

定積分的正式名稱是黎曼積分,詳見黎曼積分。用自己的話來說,就是把直角座標系上的函式的圖象用平行於y軸的直線把其分割成無數個矩形,然後把某個區間[a,b]上的矩形累加起來,所得到的就是這個函式的圖象在區間[a,b]的面積。實際上,定積分的上下限就是區間的兩個端點a、b。

我們可以看到,定積分的本質是把圖象無限細分,再累加起來,而積分的本質是求一個函式的原函式。它們看起來沒有任何的聯絡,那麼為什麼定積分寫成積分的形式呢?

定積分與積分看起來風馬牛不相及,但是由於一個數學上重要的理論的支撐,使得它們有了本質的密切關係。把一個圖形無限細分再累加,這似乎是不可能的事情,但是由於這個理論,可以轉化為計算積分。這個重要理論就是大名鼎鼎的牛頓-萊布尼茲公式,它的內容是:

若f'(x)=f(x)

那麼∫f(x) dx (上限a下限b)=f(a)-f(b)

牛頓-萊布尼茲公式用文字表述,就是說一個定積分式的值,就是上限在原函式的值與下限在原函式的值的差。

正因為這個理論,揭示了積分與黎曼積分本質的聯絡,可見其在微積分學以至更高等的數學上的重要地位,因此,牛頓-萊布尼茲公式也被稱作微積分基本定理。

3.0微積分

積分是微分的逆運算,即知道了函式的導函式,反求原函式。在應用上,積分作用不僅如此,它被大量應用於求和,通俗的說是求曲邊三角形的面積,這巧妙的求解方法是積分特殊的性質決定的。

一個函式的不定積分(亦稱原函式)指另一族函式,這一族函式的導函式恰為前一函式。

其中:[f(x) + c]' = f(x)

一個實變函式在區間[a,b]上的定積分,是一個實數。它等於該函式的一個原函式在b的值減去在a的值。

積分 integral 從不同的問題抽象出來的兩個數學概念。定積分和不定積分的統稱。不定積分是為解決求導和微分的逆運算而提出的。

例如:已知定義在區間i上的函式f(x),求一條曲線y=f(x),x∈i,使得它在每一點的切線斜率為f′(x)= f(x)。函式f(x)的不定積分是f(x)的全體原函式(見原函式),記作 。

如果f(x)是f(x)的一個原函式,則 ,其中c為任意常數。例如, 定積分是以平面圖形的面積問題引出的。y=f(x)為定義在[a,b〕上的函式,為求由x=a,x=b ,y=0和y=f(x)所圍圖形的面積s,採用古希臘人的窮竭法,先在小範圍內以直代曲,求出s的近似值,再取極限得到所求面積s,為此,先將[a,b〕分成n等分:

a=x0<x1<…<xn=b,取ζi∈[xi-1,xi〕,記δxi=xi-xi-1,,則pn為s的近似值,當n→+∞時,pn的極限應可作為面積s。把這一類問題的思想方法抽象出來,便得定積分的概念:對於定義在[a,b〕上的函式y=f(x),作分劃a=x0<x1<…<xn=b,若存在一個與分劃及ζi∈[xi-1,xi〕的取法都無關的常數i,使得,其中則稱i為f(x)在[a,b〕上的定積分,表為即 稱[a,b〕為積分割槽間,f(x)為被積函式,a,b分別稱為積分的上限和下限。

當f(x)的原函式存在時,定積分的計算可轉化為求f(x)的不定積分:這是c牛頓萊布尼茲公式

微分一元微分

定義:設函式y = f(x)在x.的鄰域內有定義,x0及x0 + δx在此區間內。

如果函式的增量δy = f(x0 + δx) − f(x0)可表示為 δy = aδx + o(δx)(其中a是不依賴於δx的常數),而o(δx0)是比δx高階的無窮小,那麼稱函式f(x)在點x0是可微的,且aδx稱作函式在點x0相應於自變數增量δx的微分,記作dy,即dy = aδx。

通常把自變數x的增量 δx稱為自變數的微分,記作dx,即dx = δx。於是函式y = f(x)的微分又可記作dy = f'(x)dx。函式的微分與自變數的微分之商等於該函式的導數。

因此,導數也叫做微商。

當自變數x改變為x+△x時,相應地函式值由f(x)改變為f(x+△x),如果存在一個與△x無關的常數a,使f(x+△x)-f(x)和a·△x之差關於△x→0是高階無窮小量,則稱a·△x是f(x)在x的微分,記為dy,並稱f(x)在x可微。函式可導必可微,反之亦然,這時a=f′(x)。再記a·△x=dy,則dy=f′(x)dx。

例如:d(sinx)=cosxdx。

幾何意義:

設δx是曲線y = f(x)上的點m的在橫座標上的增量,δy是曲線在點m對應δx在縱座標上的增量,dy是曲線在點m的切線對應δx在縱座標上的增量。當|δx|很小時,|δy-dy|比|δy|要小得多(高階無窮小),因此在點m附近,我們可以用切線段來近似代替曲線段。

多元微分

同理,當自變數為多個時,可得出多元微分得定義。

運演算法則:

dy=f'(x)dx

d(u+v)=du+dv

d(u-v)=du-dv

d(uv)=du·v+dv·u

d(u/v)=(du·v-dv·u)/v^2

2樓:匿名使用者

你有多少分我不知道,可是這種只喊口號,不見行動的行為我很bs儘管如此,為了傳授知識,我還是告訴你基本的內容微分相當於求導,積分相當於求原函式。

求導的方法簡單,求原函式則有點難度。

定積分和微積分有什麼區別?

3樓:一鳴問神

定積分是變數限定在一定的範圍內的積分,有範圍的.微積分包括微分和積分,積分和微分互為逆運算,積分又包括定積分和不定積分,不定積分是沒範圍的

眾所周知,微積分的兩大部分是微分與積分。一元函式情況下,求微分實際上是求一個已知函式的導函式,而求積分是求已知導函式的原函式。所以,微分與積分互為逆運算。

微積分(calculus)是高等數學中研究函式的微分(differentiation)、積分(integration)以及有關概念和應用的數學分支。它是數學的一個基礎學科。內容主要包括極限、微分學、積分學及其應用。

微分學包括求導數的運算,是一套關於變化率的理論。它使得函式、速度、加速度和曲線的斜率等均可用一套通用的符號進行討論。積分學,包括求積分的運算,為定義和計算面積、體積等提供一套通用的方法。

定積分包含於微積分

微積分包括:微分,積分

積分又包括:定積分,不定積分

不定積分是隻有積分號,沒有積分上下限的那種積分

定積分是不但有積分號,還有積分上下限的那種積分

微分:設函式y=f(x)的自變數有一改變數△x,則函式的對應改變數△y的近似值f~(x)*△x叫做函式y的微分.(「~」表示導數)

記為 dy=f~(x)△x

可見,微分的概念是在導數概念的基礎上得到的.

自變數的微分的等於自變數的改變數,則

將△x用dx代之,則微分寫為dy=f~(x)dx

變形為:dy/dx=f~(x)

故導數又叫微商.

積分:它是微分學的逆問題.函式f(x)的全體原函式叫做f(x)的或f(x)dx的不定積分.記作 ∫f(x)dx.

若f(x)是f(x)的原函式,則有

∫f(x)dx=f(x)+c c為任意常數,稱為不定積分常數.

對於定積分,它的概念**不同於不定積分.定積分檎是從極限方面來.是從以「不變」代「變」,以「直」代「曲」求某個變化過程中無限多個微小量的和,最後取極限得到的.

所以不定積分與定積分不是僅差一個常數的問題,即使是在計算上僅差一常數,而且運演算法則也基本相同.它們之間建立關係是通過「牛頓-萊布尼茲公式」.公式是

非曲直 ∫f(x)dx=f(b)-f(a) 積分下限a,上限b

4樓:小想的小世界

微積分包括微分和積分,微分和積分的運算正好相反,二者互為逆運算。

積分又包括定積分和不定積分。

定積分是指有固定的積分割槽間,它的積分值是確定的。

不定積分沒有固定的積分割槽間,它的積分值是不確定的。

微積分的應用:

(1)運動中速度與距離的互求問題

(2)求曲線的切線問題

(3)求長度、面積、體積、與重心問題等

(4)求最大值和最小值問題(二次函式,屬於微積分的一類)

定積分的應用:

1,解決求曲邊圖形的面積問題

例:求由拋物線與直線圍成的平面圖形d的面積s.

2,求變速直線運動的路程

做變速直線運動的物體經過的路程s,等於其速度函式v=v(t) (v(t)≥0)在時間區間[a,b]上的定積分

3,變力做功

定積分:數學定義:如果函式f(x)在區間[a,b]上連續,用分點xi將區間[a,b]分為n 個小區間,在每個小區間[xi-1,xi]上任取一點ri(i=1,2,3„,n) ,作和式f(r1)+...

+f(rn) ,當n趨於無窮大時,上述和式無限趨近於某個常數a,這個常數叫做y=f(x) 在區間上的定積分.。

記作/ab f(x) dx 即 /ab f(x) dx =limn>00 [f(r1)+...+f(rn)], 這裡,a 與 b叫做積分下限與積分上限,區間[a,b] 叫做積分割槽間,函式f(x) 叫做被積函式,x 叫做積分變數,f(x)dx 叫做被積式.

幾何定義:可以理解為在 oxy座標平面上,由曲線y=f(x)與直線x=a,x=b以及x軸圍成的曲邊梯形的面積值(一種確定的實數值)

微積分(calculus)是高等數學中研究函式的微分(differentiation)、積分(integration)以及有關概念和應用的數學分支。

它是數學的一個基礎學科。內容主要包括極限、微分學、積分學及其應用。微分學包括求導數的運算,是一套關於變化率的理論。

它使得函式、速度、加速度和曲線的斜率等均可用一套通用的符號進行討論。積分學,包括求積分的運算,為定義和計算面積、體積等提供一套通用的方法。

高等數學微積分函式,高等數學微積分函式

答 1 高等數學 以數一為例 中的微積分,可以大致分為一元微積分和多元微積分,兩者的區別不僅僅是自變數的數目,而是二維 平面 和n維之間的差異 這種差異是非常抽象的,絕不是現有教材上的 切線 和 曲面切平面 的差異,因此,從這個方面來講,首先理解和認識n元微積分的本質及難度才能更好的學好高等微積分 ...

高等數學,考研數學,微積分,問題,如圖

考研數學一考的是高等數學 以同濟6版為標準書籍作為參考 不過高數中還是有微積分的 希望對你有幫助 高等數學,考研數學,微積分,問題,如圖2.41 你可以按照考研大綱進行復習 大綱上要求的內容你必須要全面的掌握,至於高等數學的專內容主要是微積分屬 的知識,你可以參照同濟大學的高等數學第四版 高等教育出...

高等數學,求積分,高等數學積分計算,求詳解

球座標系積分 注意z 2 x 2 y 2平方後是x 2 y 2 z 2 2表示上半球面,所以積分割槽域並不是兩個錐面圍成的,而是一個球面和一個錐面。而圖中解析用的是球座標系積分 第二個曲面z可知x y 2即r 2 高等數學積分計算,求詳解 不知道你的5x在分子還是分母,所以就都求了下 以上,請採納。...